27 research outputs found

    Future-based Static Analysis of Message Passing Programs

    Get PDF
    Message passing is widely used in industry to develop programs consisting of several distributed communicating components. Developing functionally correct message passing software is very challenging due to the concurrent nature of message exchanges. Nonetheless, many safety-critical applications rely on the message passing paradigm, including air traffic control systems and emergency services, which makes proving their correctness crucial. We focus on the modular verification of MPI programs by statically verifying concrete Java code. We use separation logic to reason about local correctness and define abstractions of the communication protocol in the process algebra used by mCRL2. We call these abstractions futures as they predict how components will interact during program execution. We establish a provable link between futures and program code and analyse the abstract futures via model checking to prove global correctness. Finally, we verify a leader election protocol to demonstrate our approach.Comment: In Proceedings PLACES 2016, arXiv:1606.0540

    Who is to Blame? Runtime Verification of Distributed Objects with Active Monitors

    Get PDF
    In Proceedings VORTEX 2018, arXiv:1908.09302International audienceSince distributed software systems are ubiquitous, their correct functioning is crucially important. Static verification is possible in principle, but requires high expertise and effort which is not feasible in many eco-systems. Runtime verification can serve as a lean alternative, where monitoring mechanisms are automatically generated from property specifications, to check compliance at runtime. This paper contributes a practical solution for powerful and flexible runtime verification of distributed, object-oriented applications, via a combination of the runtime verification tool Larva and the active object framework ProActive. Even if Larva supports in itself only the generation of local, sequential monitors, we empower Larva for distributed monitoring by connecting monitors with active objects, turning them into active, communicating monitors. We discuss how this allows for a variety of monitoring architectures. Further, we show how property specifications, and thereby the generated monitors, provide a model that splits the blame between the local object and its environment. While Larva itself focuses on monitoring of control-oriented properties, we use the Larva front-end StaRVOOrS to also capture data-oriented (pre/post) properties in the distributed monitoring. We demonstrate this approach to distributed runtime verification with a case study, a distributed key/value store

    Static Verification of Message Passing Programs

    Get PDF
    Many industrial applications, including safety-critical ones, consist of several dis- joint components that use message passing to communicate according to some protocol. These components are typically highly concurrent, since message ex- changes may occur in any order. Developing correct message passing programs is therefore very challenging, which makes proving their correctness crucial [4]. A popular API for implementing message passing programs is the Message Passing Interface (MPI) library. We focus on the modular veri�cation of MPI programs. Related work mainly focuses on communication and considers abstract models rather than concrete implementations [10,5]. We consider concrete Java code and combine static veri�cation with well-known techniques for reasoning about concurrent and distributed programs, based on process algebras [7]

    A Distributed Hash Table for Shared Memory

    Get PDF
    Distributed algorithms for graph searching require a high-performance CPU-efficient hash table that supports find-or-put. This operation either inserts data or indicates that it has already been added before. This paper focuses on the design and evaluation of such a hash table, targeting supercomputers. The latency of find-or-put is minimized by using one-sided RDMA operations. These operations are overlapped as much as possible to reduce waiting times for roundtrips. In contrast to existing work, we use linear probing and argue that this requires less roundtrips. The hash table is implemented in UPC. A peak-throughput of 114.9 million op/s is reached on an Infiniband cluster. With a load-factor of 0.9, find-or-put can be performed in 4.5μs on average. The hash table performance remains very high, even under high loads

    An Exercise in Verifying Sequential Programs with VerCors

    Get PDF
    Society nowadays relies heavily on software, which makes verifying the correctness of software crucially important. Various verification tools have been proposed for this purpose, each focusing on a limited set of tasks, as there are many different ways to build and reason about software. This paper discusses two case studies from the VerifyThis2018 verification competition, worked out using the VerCors verification toolset. Interestingly, these case studies are sequential, while VerCors specialises in reasoning about parallel and concurrent software. This paper elaborates on our experiences of using VerCors to verify sequential programs. The first case study involves specifying and verifying the behaviour of a gap buffer; a data-structure commonly used in text editors. The second case study involves verifying a combinatorial problem based on Project Euler problem #114. We find that VerCors is well capable of reasoning about sequential software, and that certain techniques to reason about concurrency can help to reason about sequential programs. However, the extra annotations required to reason about concurrency bring some specificational overhead
    corecore